Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America
نویسندگان
چکیده
Leaf-off individual trees in a deciduous forest in the eastern USA are detected and analysed in small footprint, high sampling density lidar data. The data were acquired February 1, 2001, using a SAAB TopEye laser profiling system, with a sampling density of approximately 12 returns per square meter. The sparse and complex configuration of the branches of the leaf-off forest provides sufficient returns to allow the detection of the trees as individual objects and to analyse their vertical structures. Initially, for the detection of the individual trees only, the lidar data are first inserted in a 2D digital image, with the height as the pixel value or brightness level. The empty pixels are interpolated, and height outliers are removed. Gaussian smoothing at different scales is performed to create a three-dimensional scale-space structure. Blob signatures based on second-order image derivatives are calculated, and then normalised so they can be compared at different scale-levels. The grey-level blobs with the strongest normalised signatures are selected within the scale-space structure. The support regions of the blobs are marked one-at-a-time in the segmentation result image with higher priority for stronger blobs. The segmentation results of six individual hectare plots are assessed by a computerised, objective method that makes use of a ground reference data set of the individual tree crowns. For analysis of individual trees, a subset of the original laser returns is selected within each tree crown region of the canopy reference map. Indices based on moments of the first four orders, maximum value and number of canopy and ground returns, are estimated. The indices are derived separately for height and laser reflectance of branches for the two echoes. Significant differences ( p < 0.05) are detected for numerous indices for three major native species groups: oaks (Quercus spp.), red maple (Acer rubrum) and yellow poplar (Liriodendron tuliperifera). Tree species classification results of different indices suggest a moderate to high degree of accuracy using single or multiple variables. Furthermore, the maximum tree height is compared to ground reference tree height for 48 sample trees and a 1.1-m standard error (R = 68% (adj.)) within the test-site is observed. D 2003 Elsevier Science Inc. All rights reserved.
منابع مشابه
A Sensitivity analysis for a novel individual tree segmentation algorithm using 3D lidar point cloud data
LiDAR sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of vertically distributed forest attributes. So far, two main strategies on the use of LiDAR data in forestry are reported: area-based method (ABA) and individual tree method (ITC). Recently, a novel 3D segmentation approach has been developed for extracting single trees from LIDAR d...
متن کاملSensitivity Analysis of 3D Individual Tree Detection from LiDAR Point Clouds of Temperate Forests
Light detection and ranging (LiDAR) sampling or full-area coverage is deemed as favorable means to achieve timely and robust characterizations of forests. Recently, a 3D segmentation approach was developed for extracting single trees from LiDAR data. However, key parameters for modules used in the strategy had to be empirically determined. This paper highlights a comprehensive study for the sen...
متن کاملA Region-Based Hierarchical Cross-Section Analysis for Individual Tree Crown Delineation Using ALS Data
In recent years, airborne Light Detection and Ranging (LiDAR) that provided three-dimensional forest information has been widely applied in forest inventory and has shown great potential in automatic individual tree crown delineation (ITCD). Usually, ITCD algorithms include treetop detection and crown boundary delineation procedures. In this study, we proposed a novel method called region-based...
متن کاملDetection of Individual Tree Crowns in Airborne Lidar Data
Laser scanning provides a good means to collect information on forest stands. This paper presents an approach to delineate single trees automatically in small footprint light detection and ranging (lidar) data in deciduous and mixed temperate forests. In rasterized laser data possible tree tops are detected with a local maximum filter. Afterwards the crowns are delineated with a combination of ...
متن کاملSingle Tree Detection in Forest Areas with High-density Lidar Data
The study presents a novel method for delineation of tree crowns and detection of stem positions of single trees from dense airborne LIDAR data. The core module of the method is a surface reconstruction that robustly interpolates the canopy height model (CHM) from the LIDAR data. Tree segments are found by applying the watershed algorithm to the CHM. Possible stem positions of the tallest trees...
متن کامل